Formal Gevrey Class of Formal Power Series Solution for Singular First Order Linear Partial Differential Operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gevrey order of formal power series solutions of inhomogeneous partial differential equations with constant coefficients

In an earlier paper, the first author showed that certain normalized formal solutions of homogeneous linear partial differential equations with constant coefficients are multisummable, with a multisummability type that can be determined from a Newton polygon associated with the PDE. In this article, some of the results obtained there are extended in several directions: First of all, arbitrary f...

متن کامل

Gevrey Asymptotic Theory for Singular First Order Linear Partial Differential Equations

The reason why we consider this type of equation will be explained in the end of this section. As mentioned in Part I, we know that the equation (1.1) has a unique formal power series solution in O[R][[y]]2 for some R > 0. Here we say that a formal power series u(x, y) belongs to O[R][[y]]2 if u(x, y) can be written as u(x, y) = ∑∞ n=0 un(x)y , where all un(x) are holomorphic on {x ∈ C; |x| ≤ R...

متن کامل

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tokyo Journal of Mathematics

سال: 2000

ISSN: 0387-3870

DOI: 10.3836/tjm/1255958687